Defective Coloring on Classes of Perfect Graphs
نویسندگان
چکیده
In Defective Coloring we are given a graph G and two integers χd,∆ ∗ and are asked if we can χd-color G so that the maximum degree induced by any color class is at most ∆∗. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd,∆ ∗ is set to the smallest possible fixed value that does not trivialize the problem (χd = 2 or ∆ ∗ = 1). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd or ∆ ∗ is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd and ∆ ∗ are unbounded.
منابع مشابه
On characterizing game-perfect graphs by forbidden induced subgraphs
A graph G is called g-perfect if, for any induced subgraph H of G, the game chromatic number of H equals the clique number of H. A graph G is called g-col-perfect if, for any induced subgraph H of G, the game coloring number of H equals the clique number of H. In this paper we characterize the classes of g-perfect resp. g-col-perfect graphs by a set of forbidden induced subgraphs. Moreover, we ...
متن کاملDefective List Colorings of Planar Graphs
We combine the concepts of list colorings of graphs with the concept of defective colorings of graphs and introduce the concept of defective list colorings. We apply these concepts to vertex colorings of various classes of planar graphs. A defective coloring with defect d is a coloring of the vertices such that each color class corresponds to an induced subgraph with maximum degree at most d. A...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملExploring the complexity boundary between coloring and list-coloring
Many classes of graphs where the vertex coloring problem is polynomially solvable are known, the most prominent being the class of perfect graphs. However, the list-coloring problem is NP-complete for many subclasses of perfect graphs. In this work we explore the complexity boundary between vertex coloring and list-coloring on such subclasses of perfect graphs, where the former admits polynomia...
متن کاملOn the Maximum Number of Dominating Classes in Graph Coloring
In this paper we investigate the dominating- -color number، of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and H. This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2].
متن کامل